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Magnetic correlations in ferromagnets undergoing spin 
reorientation transitions 
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Laboratorio de hlagnerismo. Departamenro dc Firica de Materia Condens3da and 
lnstiluto de Ciencia de Marenaln de Aragdn (ICMA). Untversidad ae Zaragoza and 
Conrejo Superior de Investigaciones Cicntificas (CSIC), 50009 Zaragoza. Span 

Received 10 June 1991 

Abshct.The longitudinal(paralleltothecaxis)andtransverse(tothecaxis)spincorrelation 
hmctions am calculated for Ferromagnetic systems with crystalline axial symmetries, and 
undergoingspin reorientation (SR) transitions under the effectsolcompeting crystal electric 
field (cff) anisotropies of axial and planar character. The structure factor is a combination 
of a long-range ferromagnetic one, F(e)s(k) ,  with amplitude dependent on the SR angle 8,  
plus a finite contribution at finite wavevectors R. This small-angle neutron scattering (SANS) 
structure factor iscontributed by a Lorentian ( L )  term, due to the magnon scattering, plus 
asquared Lorentzian (L’) term produced by zero-point uniform quantum spin fluctuations. 
This SANS scattering in the canted magnetization phase is produced within the magnetic 
domain walls. and therefore has a correlation length of the order of the domain wall width. 
The prefactors OF the L and L’ SANS factors are complex functions of the spin reorientation 
angle and of the cEF strength parameters and spin-wave stiffnessconstant. These results are 
briefly discussed in connection with recent SANS experiments performed in the tetragonal 
(Er,Nd, .,),Fe,*B hard intermetallic pseudorernary compounds. 

1. Introduction 

Pseudoternary rare-earth intermetallics, such as (Er,REl -&Fel@ (RE = Nd, Dy, Ho) 
and Pr,Ndl -$o,, are crystallographically uniaxial (tetragonal or hexagonal) ferro- 
magnets. The presence of the RE ions with opposite a, Stevens coefficients produces 
competing axial-planar magnetocrystalline anisotropies, which give rise to the appear- 
ance of a spin reorientation (SR) process. The overall magnetization vector rotates from 
the crystallographic c axis towards the basal plane, the system becoming a canted 
ferromagnet, the magnetization forming a temperature-dependent canting angle 0 with 
the c axis (Ibarra et al 1988). This process starts below a certain phase transition 
temperature TsR, around which the order parameter B is believed to suffer strong critical 
fluctuations (del Moral etal1989,1990). Usually the transition-metal partnercooperates 
in getting the high-temperature axial magnetic structure. Sometimes, as is the case for 
the pure Nd,Fe,,B system, the competition between second- and fourth-order crystal 
electric field (CEF) anisotropies is responsible for the transition, although we are not 
going to treat this situation here. That this is a second-order phase transition (Algarabel 
eta1 1988) has been demonstrated through the anomalies appearing at TSR in the low- 
field AC magnetic susceptibility (Algarabel et all988, del Moral et a1 1989, Ibarra et al 
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1989b) and also from the scaling of 8 near TSR (Moze eta1 1990). More details about this 
transition and its critical character are given in the above references. 

In a companion paper to this one, hereafter termed paper I (del Moral 1992a), a 
model, basedon thespin-wave approximation, wasdeveloped. There, amechanism was 
proposed to explain such a transition, as well as a calculation of the temperature 
dependence of the order parameter 8. In particular, this model determines the value 
of the critical exponent (=1/2) and the low-temperature dependence of sin%, of 
T3!? Bloch-like type. Also predicted is the relation between the 0 K SR angle O(0) and 
TSR. Thisangleismainlyduetotheuniform(R = 0)zero-point quantumspinfluctuations. 

On the other hand. small-angle neutron scattering (SANS) experiments performed 
on the whole (Er,Nd, -J2FeI4B series (del Moral ern1 1991) showed a series of features. 
The structure factor isessentially of squared Lorentzian profile, with strongly dependent 
temperature amplitudes, which show anomalies at TsR and Tsw, the temperature where 
a cone-cone transition is believed to occur (del Moral et al 1989). The associated 
coherence lengths, of theorder of =150-300 A, show aswellstrong temperaturedepen- 
dcnces and weak, but well defined. anomalies in the form of peaks at TsR. Therefore we 
have tried in this paper to develop a model, based also on the spin-wave approximation, 
in order to explain the existence of SANS scattering in a canted ferromagnet, as well as 
its origin. The model presented here is intimatelyconnected with the one in paper I, and 
essentially deals with the calculation of the spin correlation functions, parallel and 
transverse to the c axis, together with the temperature dependences of the amplitude 
and correlation length associated with those factors. A very simplified and brief version 
of the model, only valid above and below but very close to TSR, has already been reported 
(del Moral er ~~11991). A quantitative comparison of our findingswith SANS experiments 
in the (Er,Ndl -JzFe14B series can be found elsewhere (del Moral et ai 1992b). 

2. Outline of the spin-wave model For spin reorientation transitions 

The model developed for spin reorientation transitions in systems with competing axial- 
planar anisotropies was, as already mentioned, developed in the companion paper I. 
Therefore, I will only outline here the main features of the model in order to make the 
present paper more transparent and comprehensive, but restricting the resultspresented 
only to those relevant for the calculation of the spin correlation functions, which is the 
objective of the present work. 

The complex alloys considered in section 1 are assumed to be well described by an 
effective magneticmoment p = gpBS, WheregandSrespectively are theeffectiveLandC 
factor and spin angular momentum, this moment being the one per lattice cell. A 
discussion and a justification of this procedure is given in paper I. The Hamiltonian 
describing our system is assumed to be 

where @and 0; are extended Stevens operators (Buckmaster 1962, Rudowicz 19851, 

0 0  2 - - t[3Sj - S(S + l)] 0; = (V%/8)(S: +Si) = ( 6 / 8 ) [ ( S X ) ’  - (SY)’]. 
(2) 

In (l), U,, represents the isotropic exchange interaction between SI and S, spins with 
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strength I ,  and H ,  and Hp are competing, axial and planar respectively, crystal-field 
anisotropies, of strengths D, and D,, and responsible for the spin reorientation. 

The spin-wave approximation that we are going to use naturally assumes small spin 
deviations from the average magnetization (M) axis; therefore, and in the presence of 
ansRofM, weneedtotakeaframe withthenew quantizationaxis(w)z'IIM.Therefore, 
we need to rotate the crystal frame axes, with OXlla, OYllb and OZllc (where a, band 
care the crystal axes), by Eulerian angles q around OZ until the plane (c, M), and B 
around the new OY' axis until OZ'IIM. Then B and I) are the spherical coordinates of 
M in the crystal axes frame. Accordingly, we have to rotate Hamiltonian H in the way 
detailed in I. 

The procedure of the transformation of the rotated Hamiltonian from (1) to the 
magnon representation is fully detailed in I, and here we will only give an outline of the 
procedure followed, finishing with the results that are relevant to the calculation of the 
spin correlation functions. Namely, in terms of creation, a;', and annihilation, a,, spin 
deviation operators at site I ,  and for large spin S, we first write 

Sz( i )  = S - a:a, St (0 = V(B)a l  s-(9 = V ( 2 ) a :  (3) 

which immediately gives 

~ " ( 0  = [V/i2s)/2](al + a:) Sy(0 = [d(2s)/2](al - a:). (4) 

Afterwards we transform to the magnon representation, according to the standard 
Holstein-Primakoff (HP) transformations, 

The rotated magnon Hamiltonian is 

H' = H~ + E (ApLa, + &B@,@_k + ts:ata?,) + (poao + p i a : )  (6)  
k 

where the form of H o  does not matter here (see I). This has the Holstein-Primakoff 
form plus linear terms in the k = 0 mode, and 

A, = E* + &S(3 cosz8 - 1) + D p S  cos(2yr) sin28 (70) 

(76) Bk = - ( 6 / 4 )  [$DJ + 9DpS cos(2y)(cosz8 + 1) + iD, sin(2q) cos 81 

andwhere the expression for^^, notimportant here,canalso befoundin1. Inexpression 
(7Q), &k is given by 

the summation being extended over the z nearest neighbours (NN), at positions 6, of the 
probe ion. 
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The next stage is the full diagonalization of (6), which we will detail here because of 
the use to be made of it later on. The diagonalization stages are: 

6 )  = a k  + cdh.0 ( 8 4  

which eliminates the linear terms in H';  

(ii) ak = (1/V2) ei"h@k + 
and cc (86) 

(iii) p k  = { I P k  + 12p: D-h  = 1 I P - k  - 1 2 P ! k  and cc (84 

a+ = ( I / v ~ )  e-i"h(r6, - B m k )  

which separate out the +kand -k terms; and 

which give rise to a fully diagonalized magnon Hamiltonian, of the form 

N' = + 2 [ ( P : p k  + h ) i k  - k A k ]  (9) 

i k  = (A: - IB"')''' 

k 

where 

(10) 
are the magnon excitation energies (again, the form of Ht, does not matter here). Thc 
diagonalizing matrices appearing in (Sc) are 

ll.z = ( [A ,  2 (Ai - ~ B h ~ 2 ) ' ~ z ] / 2 ( A ~  - 1Bk12)'/2)'n (114 

where the 2 signs in (1 l a )  respectively refer to I ,  and 1,. The form of cu is quite complex 
(see I), but restricting ourselves here to the case of interest to be considered later on, 
i.e. SR for V/J = 0 (i.e. in plane (c,  a ) ) ,  it has the form 

cu = \/N~(2S)sin(26)/([~(3cosZ6 - 1) - (3V%/4) sin'8 - A[(V%/4)(cos26 + 1) 
~ ~~~~ ~ 

(116) - 3  ' 2 sin 611 

where we have introduced the important parameter in this model, A = -(Dp/D,). 
This completes the diagonalization procedure for H ,  The next stage is the deter- 

mination of the equilibrium SR angle 6 and its temperature dependence, which was fully 
done in I by minimization of the system free energy, F = -(1//3)In 2, with P = l / k B T  
and 2 the partition function. Details are given in I. With this background we are able to 
proceed now to the calculation of the spin correlation functions. 

3. Rotation to the magnetization axes frame of spin correlation functions 

The situation of the definitions of the Racah or Stevens angular momentum operators 
in nowadays somewhat intricate and confusing (Rudowicz 1985). Therefore, in order to 
calculate the spin correlation functions properly, we have to define our operators in a 
correct and coherent way. We have, as we said before, to calculate the transverse (to 
the c axis) correlation functions (Sf S;) and (Sf S;), as well as the longitudinal one 
(S; S;}, i.e. measured relative to the crystal axes. Here (. . .)means the thermal average 
over the energy levels of the already diagonalized Hamiltonian H ' ,  given by equation 
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(9 ) .  Now, rotation by the Eulerian angles, defined in section 2, gives, in the classical 
limit (infinite S ) ,  the following transformation of spin vector coordinates: 

Sx = S"' cos e cos y + S" sin e cos y - 9' sin y 
Sy = S"' cosecos y, + S2' sin esin y + Sy'cos y 
Sz = Sz' cos e - SI' sin e. 

(12) 

Here the ( x ,  y ,  z)  indices refer to the crystal axes frame and the primed ones to the 
rotated magnetization one. Now, for the Rudowicz (1985) and Buckmaster era1 (1972) 
transformation of the extended Stevens operators (see section 2) to be coherent with 
the classical limit, we have to define the first-order Buckmaster (1962) operators in the 
form 

o: = + S +  0;' = +s- (13) 

(14) 

( 1 5 4  

0 0  - s z  
1 -  

and therefore 

S" = @+ + s - )  = 0; 

[b'& = -sin 8 6;' + cos 0 Op' 

[6:ld = cos e cos y O{' + sin 0 cos y Op' - sin q Oj' 

[O:lCf = cos 8 sin II, 0:' + sin 8 sin y 0p' + cos II, Or 

SY = &y+ - S-) = 0;.  

The rotation of Op, 6 ;  and 6 :  then becomes (Rudowicz 1985, Buckmaster el al 
1972) 

(15b) 

(W 
where the index cf refers to the old crystal axes frame and the primed one to the new 
magnetization rotated one. 

The general correlation functions, referred to the crystal axes, are now immediately 
obtained from (14)  and (15).  However, we will make the mentioned assumption that 
the SR takes place on the (U, c) plane of the uniaxial crystal, and make I$ = 0 in (15). In 
such a situation, the spin correlation functions become: 

(i) Transverse (IC) 

Cfm = (Sf S i )  = c0sz8 (Oi'(l) O i ' ( m ) )  + sinZO (@(l)  Or(m))  

+ $sin(2@)(01'(1) Op'(m) + @(l)  O!'(m))  
= cosz8(Sf S i )  + sinZ8(Sf' S i )  + tsin(28)(S$' S i  + Sf' S i )  ( 1 6 4  

(166) ~ i ; .  = (S; s:) = (Oi'(1) O ; ' ( m ) )  = (sf s$). 
(ii) Longitudinal ([IC) 
Cg = (Sf S ; )  = sin28(O:'(l) 6 r ( m ) )  + cos2e(O:'(l) @'(m))  

- hsin(2e)[(Or(l) @'(m)) + (Op'(7) O:'(m))]  
= sinZ@($ S i )  + cos2e(s i 'S~)  - tsin(28)(S;'Si + S; 'S$) .  ( 1 6 4  

4. Transverse correlation functions (Sf SX,) and (Sf SU,) and longitudinal (S; S:) 

The averages in equations (16) were calculated, as we have already said, within the spin- 
wave (sw) approximation. We have, essentially, to calculate diagonal (in x ' ,  y ' ,  z' 
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indices)correlationfunctions (S"(l)Si'(m)), i = x ,  y .  z, and the crossed one (S*'(r)Sr'(m)). 
Omitting, for simplicity, the primed indices in the spin deviation operators, the cor- 
relation functions adopt in the site a:, a, representation the forms 

(Sr S i )  = iS(afa2  +ala:  i-aTa. + a,a,) 

(Sf S i )  = fS(-a,+ a$ 6 ala: + a f a ,  - ala.) 

(Sf's;) = S2 - ( a f a r  + a:a,) + (afa,a$a,,,) 

(170) 

(17b) 

(174 
(Sf' Si) = (Si 's : )  = t d (2S) (S (a l  + a:) - ala:am - afa:a.). (17d) 

Only the terms of  the kind (a,aA, (a,+a,,,}, (a,a:a,) and (atata:am} and complex con- 
jugates (CC) are distance-dependent, giving rise to k-dependent measurable structure 
factors by SANS techniques. There are also distance-independent terms that, as we shall 
see, give rise to ferromagnetic long-range contributions to the correlation functions. 
The averages have to be computed in the representation of wavefunctions p: , pk, where 
the overall Hamiltonian His diagonal (see equation (9)). 

The computation of the averages [17a-d) is quite straightforward, and therefore we 
will only indicate here the final results, leaving for the appendix the details of the main 
stagesof thecalculations. They all have the common reciprocal-space Fourier transform 

1 
F ( i - m ) = G z { 1 2 ( k )  + Ici'(k) ~l:(k)l!B:Bk)}cosIk'(r-m)l (18) 

k 

which is paramount is this work, Clearly the first term represents, in asANsexperiment, 
the scattering due tozero-point quantum fluctuations, and the second one the scattering 
produced by thermally excited magnons. We should mention that in a series of S A N S  
experiments done on the pseudoternary compounds (Erfld, _&Fe,&, only the fmt 
contribution has been observed, the magnon effect being negligtble (del Moral et a1 
1991). 

We will summarizenowthe formof thecorrelationfunctions(l7a-d),on therotated 
magnetization frame (see appendix): 

(Sf S i )  = 2Sc&'N + fSF(2 - m )  

(Sf' S:) = < S 3 p c 0 / d N  - td(S)(ca/dN)F(I - m) 

(194 

(196) 

(194 

($ S;) = fSF(I - m) 

(Sf S i )  = Sz - 24," f cd/NZ t (2c3/N - l)F(O) + ( ca /N)F( l -  m). 
(19d) 

Finally, the measurable, on the crystal frame of axes, spin correlation functions are 
obtained by combining equations (16) and (19),  becoming 

CZ. = 2S(c$/N) cos2@ + [Sz - 2c: /N+ + (.?#I+'- 1)F(O)Jsin~8 

+ V'~S~/~(C,/N) sin(28) + [fscosze + ( c i / N )  sin28 

- V ' ~ S ~ ~ ( C , / . / N ,  sin(~e)]F(I - m) 
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Cf. = Zr;(c:/N) sin2@ + [S2 - 2c;/N + c d / f l  + (2ca/N - l)F(O)] Cos28 
- v ' 5 W ( c 0 / d ~  sin(20) + [as sin% + (ca/N) cosz e 
+ ' ~ ~ ~ ( c ~ / d w  sin(20)j~(1 - m).  (204 

c,m = (S, * SJ = E c,. 
Finally for a crystal the overall spin correlation function will be 

However, our main task, in order to give results amenable to comparison with experi- 
ments, is the calculation of the reciprocal-space structure factors, transverse, Y ( k )  and 
sYY(k), and longitudinal, Sz*(k), and this will be performed in the next section. 

5. Small-angle neutron scattering magnetic structure factors 

As we have shown above, all the distance-dependent correlation functions have the 
common hnction of equation (18), except for proportionality factors. We will now 
compute F(l - m) passing to the integral approximation and assuming for the magnon 
exchange energy the harmonic approximation, i.e. E~ = Ak2, where A is the sw magnon 
stiffness constant, A = &SaZ. This approximation is good for two reasons: We are 
mainly interested in calculating the structure factors for small-angle neutron scattering 
experiments, where the momentum transfer is small. Secondly, for the systems alluded 
to in section 1, the SR regime happens below the SR temperatures T,,, which are low in 
comparison with the Curie ones, typically TSR = TC/2 (Ibarra et a1 1989a, Marquina 
1990). 

5.1. Zero-point structure factor 
With such assumptions the zero-point quantum fluctuations contribution to F(l- nt) 

will become 

where A, and Bx are given by equations (7), and U, is the lattice volume per spin. 
Therefore 

Therefore, the structure factor is given by the expression within the large parentheses. 
However, this expression is so complicated that it is of little value for comparison with 
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experiment. However, in the large exchange limit, i.e. Ak2 S D,, D,, the square roots 
can be series-expanded and a number of straightforward transformations yield 

cos[k. ( I  - m)J 
(kz f $SWl/A)’ - s(Wz/A)* d3k’ (24) 

Now, if &/A Q 1 (large exchange limit assumption), we obtain finally 

d3k 
cos[k r ( I  - m)] (”)’ (k2  + 1 2 8 ~ ~  A 

3ua F & - m ) = -  - 
which gives a squared Lorentzian (Lz )  structure factor, 

[5(k)l0 = ( 3 ~ , / 2 ” ~ n ~ ~ ) ( ~ ~ / A ) ~ / ( k ~  + E-’)* (26) 
with magnetic correlation length 

E =  ((2/3S)A/W1)’/’ = (2A/3SD,)1/2[(3cos28 - 1) - AsinZ8]-ln. (27) 

Within the present approximations, this is essentially controlled by the pure classical 
limit anisotropy free energy (see paper I and section 5.3 below). 

5.2. Magnon excitation effects on the structure factor 
According to equations (18) and ( l la ) ,  the magnon excitation contribution to the 
structure factor is, written in integral approximation, 

Again, the structure factor is given by a complicated expression. We will therefore 
restrict ourselves to the high-temperature limit, i.e. when fJkBT 4 1 (which constitutes 
also the most interesting regime, Tsmaller than but close to TSR)> and write down (28) 
by expanding exp(&) in the approximate form 

This expression can be transformed by taking into account equations (7a, b), (23) and 
(27) to 

k Z  + E - 2  
F T ( l - m ) = -  - cos[k. (I - m)] d’k. 8n3 I (k2  + .$-2)2 - $ S z ( ~ 2 / A ) 2  

In the high exchange limit (@dA)’wiU be small, and therefore we can write (30) in the 
final form 

and therefore the temperature-dependent structure factor becomes 

[C(k)l~ ( U d k 3 ” ) ( k J / A ) / ( k 2  + E-’)  (32)  
i.e. of Lorentzian (L) kind. 
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5.3. SANS correlation lengrh and domain walls 
At k # 0, long-range ferromagnetic order scattering will not be observed in a SANS 
experiment and we should look at the origin of the k > 0 scattering represented by 
[C(k)], and [r(k)lT. The clue is the obtained correlation length, given by equation (27). 
For a system described by Hamiltonian (l), the magnetocrystalline anisotropy free 
energy (per ion), in the classical limit, is precisely (see paper I) 

f,= -(S/Z)(S/2 - 1)[Da(3cos20 - 1) + D,sin20] 

= (S/Z)(S/2 - 1)[-20, + (30. - D,)sin28] (33) 

which represents an effective uniaxial anisotropy, of easy c axis if D, > Dp/3, with 
anisotropy constant 

K, = N ( S / 2 )  (S/2 - 1)(3D, - Dp) = N(S2/4) (30, - Dp) 

for large S, with N being the number of spins per unit volume. For a magnetic domain 
within the canted magnetization phase, -N(S/2)(S/2 - l)ql therefore represents the 
equilibrium anisotropy free energy, and therefore the 180” domain walls separating two 
domains will have a width (Chikazumi 1964) 

6 = z(A’//K,/ sin2B(T))1’2 (34) 

where A‘ = AS/2N. If we arbitrarily take the origin of anisotropy energy at 0 = 0, it is 
clear that 

6 =Z(A‘/NS*/~/~,/)’’~ (35) 

and therefore our SANS measured correlation length is, from equation (27), nothing 
more than 

8 = 0.26 (36) 

i.e. a length proportional to the domain wall thickness. As we have said, this constitutes 
theclue to theinterpretationoftheoriginofthes~~sscattering: Thisistheone produced 
within thedomainwalls, whereferromagneticorderisdestroyed ifone thinksofaspiral- 
like spin configuration. There the spin system is ‘disordered’ and therefore we find the 
typical squared Lorentzian structure factor expected for a disordered (e.g. by random 
direction anisotropy) magnetic system, plus the Lorentzian one also produced in such 
systems by magnon excitations (Aharony and Pytte 1983, Cullen and del Moral 1992). 
The key point for the SANS scattering is the uniform (k  = 0) spin canting, the zero-point 
quantum fluctuations producing the neutron scattering, but the ‘active’ volume where 
such scattering exists being determined by the static (k = 0) canting, through the most 
likely formation of domain walls. In fact, the measured correlation lengths for the 
(Er,Nd,-,)2Fel,B compounds, in the range E =  120-280A (see section l), amount 
roughly to 54 to 125 average lattice constants (a = 11 A), which means moderately 
narrow domain wall widths for such anisotropic materials, but also with high Curie 
temperatures (Tc = 600 K) and large spin. 
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5.4. SANS strudure factor for  polycrystalline samples 

SANS experiments are usually done on polycrystalline samples (del Moral et a1 1991). 
Therefore, the magnetic cross section, or the scattered neutron intensity, are pro- 
portional to the overall spin magnetic structure factor 

S,(k) = S y k )  + S q k )  + SZZ(k) (37) 
which according to equations (20), (26) and (32) are given by 

x {[C(k)lO + [ imlr} (384 
wheref, ( i  = x ,  y ,  z )  are the distance-independent terms in equations (20a, E). Then, we 
obtain from (37) and (38a-c) 

Therefore the structure factor S,(k) contains a long-range ferromagneticcomponent 
(at k = 0), plus L2 and L contributions, for finite, although small, wavevectors k. For 
the geometry of a SANS experiment, the y component of k is quenched (ky = 0) and 
therefore k is restricted in (39) to thexz plane. 

6. Discussion and conclusions 

We have shown that below the SR transition temperature T ~ R ,  an infinite-range canted 
ferromagnetic state appears. If the SR is restricted to the (a,  c) plane of the crystal axial 
structure, the associated magneticcross section is dependent upon the SR angle 0,  helow 
TSR, In a SANS experiment, the wavevector k experimental resolution makes such a 
contribution invisible, and therefore any possible divergence of the spin correlation 
length appearing at TSR cannot be detected. In the same form the spin-wave approxi- 
mation is naturally unable to predict any critical divergence of the long-range spin 
correlation length, at TSR, which should diverge as tr’around TsR ( t  = IT - TsRI/Tsn is 
the reduced temperature). The sw approximation only shows the existence of the 
long-range canted ferromagnetic order below Tsn. But, besides, the sw approximation 
predicts the existence of small-angle neutron scattering at finite, but small, wavevectors 
k, composed of Lorentzian ( L )  and squared Lorentzian (L*) contributions, with a 
correlation length that is essentially the canted ferromagnetic phase domain wall width. 
This means that in those competing anisotropy systems, suffering SR transition, the SANS 
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scattering is produced within the somehow 'disordered' domain walls, and hence the 
presence of the Lz component in the structure factor. The L2 contribution is a direct 
consequence of the zero-point spin quantum fluctuations, whereas the L contribution is 
the one from the thermal excitation of magnons. 

However, as mentioned in section 1, only the L2 contribution has been found in the 
aforementioned (Er,Nd, -J2Fe14B series, probably due to the smallnessof the prefactor 
(k,T/A) in equation (32), because our SANS experiments were done in such compounds 
below TSR = T&. At small wavevectors k # 0 our model predicts the existence at TsR 
of a finite anomaly in the spin correlation length. In fact, from (27), shows a local 
maximum at Tsn, E(TSR) = (A/3SDa)@ where 8 = 0. This peak hasbeen experimentally 
observed in SANS experiments of the whole (ErxNdl_,)2Fei4B series of hard inter- 
metallics, as mentioned in section 1, the peak appearing as a very weak (although very 
well defined) anomaly over a strong background (del Moral et a1 1991). Notice, from 
(38), that above TsR (0 = 0) a non-null magnetic scattering is predicted with intensity 
proportional to W/2){[5(k)l0 + IT(k)ld. 
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Appendix 

In the following we compute all the site spin deviation operators appearing in the 
correlation functions considered in this work, in ascending order of the powers of 
operators involved. 

A S .  First-orderaoerages (aband cc 

We have that 

(a,+ + a , ) = ( l / V ~ [ ( n k + c t s k , , ) e x p ( - i k . O + ( n :  +c:&dexp(-ik.~)] 

because ((U:) = (nk) = 0. 

A.2. Second-order averages (a:a,+)artd CC 

We have 

= 2co/VN 

Diagonalizations (i) and (U) give 
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We have to diagonalize now through the (iii) stage; omitting terms whose averages are 
null, owing to the lack of final diagonal character, we have the following: 

(9 

x exp[i(k. I + k' . m)] e ~ p [ - i ( 4 ~  + @,,)I 0 

because the summation is extended over k, k' > 0; I , ,  I,, I ; ,  1; do not depend on the sign 
of k (see equation (Ila)) and the thermal averages are 

(A4) 

(443) 

(P*'Bxd = (B'rP-t.) = @*'PkS& 

assuming that the lattice possesses inversion symmetry. 

(ii) 

2 (B!,p,'. +fi:p?,.)exp[-i(cDk+ cDr)]exp[i(k.I+k'.m)] 
X . k ' > O  

x exp[-i(@,+4,.)]exp[i(k.l+ k' .m)]=O (A51 
for the same reasons as in (i). 

Now the term (alam) is the cc of (a,'aL) and therefore is also zero; terms (a la : )  and 
(arum) do not contribute to the correlation function, except for a dispersionless contri- 
bution, i.e. 

(A6) (a?aL + alam) = 2c:/N. 

A.3. Second-order averages (a:aJ and cc 
We have 

x exp[i(k. I - k' . m)] + ca /N  (A7) 

after diagonalization (i). Notice that terms ((U:) = (ad = 0. Diagonalization (ii) gives 

x exp[-i(@, - 4kf)]  exp[i(k. I - k' * m)], (A8) 

Now, diagonalization (iii) produces interesting consequences, one of which is in the 
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form of a contribution of zero-point quantum fluctuations to the correlation function. 
Effectively, extended the summation now to k, k' > 0 and k, k' < 0, we obtain 

1 - @:be + p!kBk,) exp[i(Ok - Q k . ) ]  exp[i(k 1 - k' . m)] 
2N k.k' 

considering (A4) and the independence of the l,(k) matrix on the sign of k. 
Therefore, the term a t  a,,, and its cc, ala:, give 

1 
( a : u , + a , a : ) = - ~ { ( I $ ( k ) + [ l : ( k )  +l$(k) ] (P: / .?k)}cos[k*(1-m)]+2c$/N (A10) 

which is distance-dependent and, as already mentioned, contains azero-point quantum 
fluctuations term plus a thermally excited magnon one, and also a distance-independent 
contribution. 

N k  

A.4. Third-order averages {a,a:a,,,,! and cc 

We have 

(All)  
1 

(a,a:a,,,) = N" 

Performing, as before, diagonalization (i), disregarding terms (ab = (@kI@12@h3) = 0 
(the last one becoming zero after HP diagonalizations (ii) and (iii)), we obtain 

(a,a:a,) = - 

(ak,a12ak,)exp[i(-k, . I  + kz m + k3 . m)] .  
k i . k ~ k 3  

CO 
(ek,a,&)exp[i(-kt - I +  kz * m ) ]  

"" ki.kz 

+ CO' C (o(*:ak3) exp[i(kz - k3) . m] 
kZ.k3 

CO = - (@,&@r,)exp[i(k, * m - kl .0] + hi.,,, 
N3' k1,kz 

where a,,, = 0 for 1 # m, which is the case. When adding the cc average (a:a,a;), it is 
easy to prove that distance-independent terms cancel out and therefore they need not 
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be considered any more. The first term in (A12) has already appeared in (A7), and 
therefore using the previous result, 

(ala:a.) = Lz {l$(k) + [I?(&) + [$(k)](B:pJ}exp[ik- (I - m)]. 

Adding to (A12a) its cc, we finally obtain from (17d) 

(ala:am + afa:a,) = - $2 T [ l % k )  + I[?@) + I:(k)l(BfB~)}cos[k.(I - 41. (A131 

(A12a) 
2N” k 

A S .  Fourth-order aoerage (a: aIa&a,) 

We have that 

Performing the diagonalization (i) we immediately obtain the series of equalities 

c: c: 
(a: ala2a.J = -5 + - {2(41~k2) exp[i(k, - k2) 

N 2  X i . X z  

+ (aii aXz) exp[i(k, I - k2 . m)] + (aX ia~z )  exp[-i(k, . I - k2 * m)]} 

+- (a:,ru,,~~,u:,(~t,)exp{i[(kt .I-k4.m)+(k,.m-kz.1)]} 
1 

N 2  X i .  .... k ,  

x exp[-i(k, - I  - k, . m)]} + 2- c: 2 (all crXz)exp[i(k, - kZ) . r ]  
Nz kiIkz 

( ~ 1 5 )  
where we have neglected the fourth-order term in a:, a,. The second term is null if 
I # m and the third was already calculated when solving the second-order averages 
(consult equations (A7) and (AS)). The last one is a particular case of the second one 
for 1 = m. Therefore, we finally obtain, from (AlS), 
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